Algos Required for solving any problem

Mathematics:

(a)Number Theory

1. Prime Number Generation  (Sieve, Segmented Sieve)
2. Euler Totient Theorem
3. Fermat’s Theorem
4. HCF & LCM (Euclid)
5. Linear Diophantine Equations (Extended Euclid)
7. Cycle Finding (Floyd Algo and Brent Algo)
8. Integer Factorization (Trial Division , Pollard Rho method)
9. Lucas Theorem  (Simple & Advance)
10. Chinese Remainder Theorem
11. Wilson Theorem
12. Miller – Rabin Primality Testing
13. Perfect Numbers
14. Goldbach Conjecture

(b)Probability

1. Basic Probability and Conditional Probability
2. Random Variables
3. Probability Generating Functions
4. Expectation
5. Probability Distribution [Binomial, Poisson, Normal,Bernoulli]

(c)Counting

1. Pigeonhole principle
2. Inclusion Exclusion
3. Special Numbers  [Stirling,Fibonacci,Catalan, Eulerian, Harmonic, Bernoulli]
4. Polya Counting
5. Burnside lemma

(d)Permutation Cycles

(e)Linear Algebra

1. Addition And Subtraction Of Matrices
2. Multiplication ( Strassen’s algorithm ), Logarithmic exponentiation
3. Matrix Transformations [ Transpose, Rotation Of Matrix, Representing Linear Transformations Using Matrix ]
4. Determinant , Rank and Inverse Of Matrix [ Gaussian Elimination , Gauss Jordan Elimination]
5. Solving System Of Linear Equations
6. Matrix Exponentiation To Solve Recurrences
7. Eigenvalues And Eigen vector
8. Roots of a polynomial [ Prime factorization of a polynomial, Integer roots of a polynomial]
9. Lagrange Interpolation

(e)Game Theory

1. Basic Concepts & Nim Game [Grundy Theorem , Grundy Number]
2. Hackenbush

(f)Group Theory

1. Burnside Lemma
2. Polya’s Theorem

Graphs:

(a)Graph Representation

3. Incidence Matrix
4. Edge List

(b)Graph Types

1. Directed
2. Undirected
3. Weighted
4. Unweighted
5. Planar
6. Hamilton
7. Euler
8. Special Graphs

(c)DFS & It’s Application

1. Cycle Detection
2. Articulation Points
3. Bridges
4. Strongly Connected Component
5. Connected Component
6. Path Finding
7. Solving Maze
8. Biconnectivity in Graph
9. Topological Sorting
10. Bipartite Checking
11. Planarity Testing
12. Flood-fill algorithm

(d)BFS & It’s Application

1. Shortest Path (No. Of Edges)
2. Bipartite Checking
3. Connected Components

(d)Minimum Spanning Tree

1. Prim’s Algorithm
2. Kruskal Algorithm

(d)Single Source Shortest-Path

1. Dijkstra
2. Bellman Ford

(e)All pair Shortest Path

1. Floyd Warshall’s Algorithm

(f)Euler Tour

(g)Flow

1. Ford-Fulkerson [PFS,DFS,BFS]
2. Dinic’s Algorithm
3. Min Cost – Max Flow  [Successive Shortest Path Algo,Cycle Cancelling Algorithm]
4. Max Weighted BPM  [Kuhn Munkres algorithm/Hungarian Method]
5. Stoer Wagner Min-Cut Algo
6. Hop-Kraft BPM
7. Edmond Blossom Shrinking Algorithm

(h)Other Important Topics On Graphs

1. 2-SAT,
2. LCA
3. Maximum Cardinality Matching
4. Application Flow
5. Min Path Cover Over Dag
6. Independent Edge Disjoint Path
7. Minimum Vertex Cover
8. Maximum Independent Set

Data Structures:

1. Arrays
3. Trees (Binary Tree And Binary Search Tree)
4. Stacks
5. Queues
6. Heap
7. Hash Tables
8. Disjoint-Set Data Structures
9. Trie
10. Segment Tree
11. Binary Index Tree
12. Treap

Searching And Sorting:

1. Linear Search
2. BInary Search
3. Ternary Search
4. Selection Sort
5. Bubble Sort
6. Insertion Sort
7. Merge Sort
8. Quick Sort
9. Quick Select
10. Heap Sort
12. Counting Sort

Greedy:
Classical Problems of Greedy & Concept
example : Fractional Knapsack

Dynamic Programming Classical Problems

1. Edit Distance
2. Egg Dropping Puzzle
3. Integer Knapsack
4. Largest Independent Set
5. Longest Biotonic Subsequence
6. Longest Common Subsequence
7. Longest Common Substring
8. Longest Increasing Subsequence
9. Longest Palindromic Subsequence
10. Longest Palindromic Substring
11. Longest Substring Without Repeating Character
12. Matrix Chain Multiplication
13. Max Size Square Submatrix With One
14. Maximum Length Chain Pairs
15. Maximum Sum Increasing Subsequence
16. Optimal Binary Search Tree
17. Palindrome Partition Problem
18. Set Partition Problem
19. Subset Sum
20. Word Wrap Problem

1. DP + Tree
3. DP + Binary Search
4. DP + Graph
5. DP + Matrix Exponentiation
6. DP + Probability Space
7. DP + Crack Recurrence

Divide & Conquer
Classical Problems & Concepts

1. Merge Sort
2. Closest Pair Points

Other Algorithm Design Techniques :

1. BackTracking
2. Man In Middle
3. Newton-Raphson to reach the fixed point
4. Brute Force
5. Constructive Algo
6. Sliding Window
7. Pancake Sorting